Собирание важностей и интересностей

Д’Аламбер, Жан Лерон

by ankniga

Материал из Википедии — свободной энциклопедии

Жан Лерон Д’Аламбер
фр. Jean Le Rond D’Alembert
Alembert.jpg
Латур. Жан Лерон Д’Аламбер.
Дата рождения: 16 ноября 1717
Место рождения: Париж
Дата смерти: 29 октября 1783 (65 лет)
Место смерти: Париж
Страна: Франция
Научная сфера: математикамеханика
Альма-матер: Парижский университет
Известные ученики: П. С. Лаплас
Известен как: один из авторов «Энциклопедии наук, искусств и ремёсел»
Логотип Викитеки Произведения в Викитеке
Жан Лерон Д’Аламбер на Викискладе

Жан Леро́н Д’Аламбе́р (д’АламберДаламберфр. Jean Le Rond D’Alembert, d’Alembert16 ноября 1717 —29 октября 1783) — французский учёный-энциклопедист. Широко известен как философматематик имеханик. Член Парижской академии наук (1740), Французской Академии (1754), Петербургской (1764) и других академий.

Биография

Д’Аламбер был незаконным сыном маркизы де Тансен[1] от артиллерийского офицера Детуша. Вскоре после рождения младенец был подкинут матерью на ступени парижской «Круглой церкви Св. Иоанна» (фр. Église Saint-Jean-le-Rond). В честь этой церкви ребёнок был назван Жаном Лероном. Воспитывался в усыновившей его семье стекольщика Руссо.

Отец в это время был за границей. Вернувшись во Францию, Детуш привязался к сыну, часто навещал его, помогал приёмным родителям и оплатил образование Д’Аламбера, хотя официально признать не решился. Мать-маркиза никакого интереса к сыну так и не проявила. Позднее, став знаменитым, Д’Аламбер никогда не забывал стекольщика и его жену, помогал им материально и всегда с гордостью называл своими родителями.

Фамилия Д’Аламбер, по одним сведениям, произведена из имени его приёмного отца Аламбера, по другим — придумана самим мальчиком или его опекунами: сначала Жан Лерон был записан в школе как Дарамбер (Daremberg), потом сменил это имя на D’Alembert.

1726: Детуш, уже ставший генералом, неожиданно умирает. По завещанию Д’Аламбер получает пособие в 1200 ливров в год и препоручается вниманию родственников. Мальчик воспитывается наряду с двоюродными братьями и сёстрами, но живёт по-прежнему в семье стекольщика. Он жил в доме приёмных родителей до1765 года, то есть до 48-летнего возраста [2].

Рано проявившийся талант позволил мальчику получить хорошее образование — сначала в коллегии Мазарини (получил степень магистра свободных наук), затем в Академии юридических наук, где он получил звание лиценциата прав. Однако профессия адвоката ему была не по душе, и он стал изучать математику.

Уже в возрасте 22 лет Д’Аламбер представил Парижской академии свои сочинения, а в 23 года был избран адъюнктом Академии.

«Трактат о динамике» Д’Аламбера

1743: вышел «Трактат о динамике», где сформулирован фундаментальный «Принцип Д’Аламбера», сводящий динамику несвободной системы к статике. Здесь он впервые сформулировал общие правила составлениядифференциальных уравнений движения любых материальных систем.

Позже этот принцип был применен им в трактате «Рассуждения об общей причине ветров» (1774) для обоснованиягидродинамики, где он доказал существование — наряду с океанскими — также и воздушных приливов.

1748: блестящее исследование задачи о колебаниях струны.

С 1751 года Д’Аламбер работал вместе с Дидро над созданием знаменитой «Энциклопедии наук, искусств и ремёсел». Статьи 17-томной «Энциклопедии», относящиеся к математике и физике, написаны Д’Аламбером. В 1757 году, не выдержав преследований реакции, которым подвергалась его деятельность в «Энциклопедии», он отошёл от её издания и целиком посвятил себя научной работе (хотя статьи для «Энциклопедии» продолжал писать). «Энциклопедия» сыграла большую роль в распространении идей Просвещения и идеологической подготовкеФранцузской революции.

1754: Д’Аламбер становится членом Французской Академии.

1764: в статье «Размерность» (для Энциклопедии) впервые высказана мысль о возможности рассматривать время как четвёртое измерение.

Д’Аламбер вёл активную переписку с российской императрицей Екатериной II [3]. В середине 1760-х годов Д’Аламбер был приглашён ею в Россию в качестве воспитателя наследника престола, однако приглашения не принял. В 1764 г. был избран иностранным почётным членом Петербургской академии наук.[4]

1772: Д’Аламбер избран непременным секретарём Французской Академии.

1783: после долгой болезни Д’Аламбер умер. Церковь отказала «отъявленному атеисту» в месте на кладбище, и его похоронили в общей могиле, ничем не обозначенной.

В честь Д’Аламбера названы кратер на обратной стороне Луны и горный хребет на видимой её стороне.

Научные достижения

Статуя Д’Аламбера в Лувре

Математика

В первых томах знаменитой «Энциклопедии» Д’Аламбер поместил важные статьи: «Дифференциалы», «Уравнения», «Динамика» и «Геометрия», в которых подробно излагал свою точку зрения на актуальные проблемы науки.

Исчисление бесконечно малых Д’Аламбер стремился обосновать с помощью теории пределов, близкой к ньютоновскому пониманию «метафизики анализа». Он назвал одну величину пределом другой, если вторая, приближаясь к первой, отличается от неё менее чем на любую заданную величину. «Дифференцирование уравнений состоит попросту в том, что находят пределы отношения конечных разностей двух переменных, входящих в уравнение» — эта фраза могла бы стоять и в современном учебнике. Он исключил из анализа понятие актуальной бесконечно малой, допуская его лишь для краткости речи.

Перспективность его подхода несколько снижалась тем, что стремление к пределу он почему-то понимал как монотонное (видимо, чтобы \Delta x \ne 0), да и внятной теории пределов Д’Аламбер не дал, ограничившись теоремами о единственности предела и о пределе произведения. Большинство математиков (в т. ч. Лазар Карно) возражали против теории пределов, так как она, по их мнению, устанавливала излишние ограничения — рассматривала бесконечно малые не сами по себе, а всегда в отношении одной к другой, и нельзя было в стиле Лейбница свободно использовать алгебру дифференциалов. И всё же подход Д’Аламбера к обоснованию анализа в конце концов одержал верх — правда, только в XIX веке.

В теории рядов его имя носит широко употребительный достаточный признак сходимости.

Основные математические исследования Д’Аламбера относятся к теории дифференциальных уравнений, где он дал метод решения дифференциального уравнения 2-го порядка в частных производных, описывающего поперечные колебания струны (волнового уравнения). Д’Аламбер представил решение как сумму двух произвольных функций, и по т. н. граничным условиям сумел выразить одну из них через другую. Эти работы Д’Аламбера, а также последующие работы Л. Эйлера и Д. Бернулли составили основу математической физики.

В 1752 году, при решении одного дифференциального уравнения с частными производными эллиптического типа (модель обтекания тела), встретившегося в гидродинамике, Д’Аламбер впервые применил функции комплексного переменного. У Д’Аламбера (а вместе с тем и у Л. Эйлера) встречаются те уравнения, связывающие действительную и мнимую части аналитической функции, которые впоследствии получили название условия Коши — Римана, хотя по справедливости их следовало бы назвать условиями Д’Аламбера — Эйлера. Позже те же методы применялись в теориипотенциала. С этого момента начинается широкое и плодотворное использование комплексных величин в гидродинамике.

Д’Аламберу принадлежат также важные результаты в теории обыкновенных дифференциальных уравнений с постоянными коэффициентами и систем таких уравнений 1-го и 2-го порядков.

Д’Аламбер дал первое (не вполне строгое) доказательство основной теоремы алгебры. Во Франции она называется теоремой Д’Аламбера — Гаусса.

Физика, механика и другие работы

Выше уже упоминался открытый им принцип Д’Аламбера, указавший, как строить математическую модель движения несвободных систем.

Выдающийся вклад Д’Аламбер внёс также в небесную механику. Он обосновал теорию возмущения планет и первым строго объяснил теориюпредварения равноденствий и нутации.

Опираясь на систему Фрэнсиса Бэкона, Д’Аламбер классифицировал науки, положив начало современному понятию «гуманитарные науки».

Д’Аламберу принадлежат также работы по вопросам музыкальной теории и музыкальной эстетики: трактат «О свободе музыки», в котором подведены итоги т. н. войны буффонов — борьбы вокруг вопросов оперного искусства, и др.

Философия

Из философских работ наиболее важное значение имеют вступительная статья к «Энциклопедии», «Очерк происхождения и развития наук» (1751, рус. пер. в книге «Родоначальники позитивизма», 1910), в которой дана классификация наук, и «Элементы философии» (1759).

В теории познания вслед за Дж. Локком Д’Аламбер придерживался сенсуализма. В решении основных философских вопросов Д’Аламбер склонялся к скептицизму, считая невозможным что-либо достоверно утверждать о Боге, взаимодействии его с материей, вечности или сотворённости материи и т. п. Сомневаясь в существовании Бога и выступая с антиклерикальной критикой, Д’Аламбер, однако, не встал на позиции атеизма.

В отличие от французских материалистов, Д’Аламбер считал, что существуют неизменные, не зависящие от общественной среды нравственные принципы. Взгляды Д’Аламбера по вопросам теории познания и религии были подвергнуты критике со стороны Дидро в произведении: «Сон Д’Аламбера» (1769), «Разговор Д’Аламбера и Дидро» (1769) и др.

Цитаты

  • Работайте, работайте — а понимание придёт потом.
  • Я не могу считать законным трату своих избытков, пока другие люди лишены необходимого…
  • Истинное равенство граждан состоит в том, чтобы все они одинаково были подчинены законам.

Примечания

  1.  История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. III. — С. 71.
  2.  Стиллвелл Д. Математика и её история. — Москва-Ижевск: Институт компьютерных исследований, 2004, стр. 270.
  3.  Избранная переписка Д’Аламбера и Екатерины II.
  4.  Советский энциклопедический словарь / Гл. ред. А.М. Прохоров. — М.: Сов. энциклопедия, 1986. — С. 357. — 1600 с. — 2 500 000 экз. — ISBN ИБ№115.

См. также

Оператор Д’Аламбера

Труды[

Переводы на русский язык

  • Извлечение из мемуара «О равновесии жидкостей» // Клеро А. Теория фигуры Земли, основанная на началах гидростатики. — Л., 1947.
  • О фигуре Земли. // В книге: Клеро А. Теория фигуры Земли, основанная на началах гидростатики. — Л., 1947.
  • Динамика. — М.-Л.: Гостехиздат, 1950. — 315 с. Серия: Классики естествознания.
  • История в энциклопедии Дидро и Д’Аламбера / Пер. с франц. и прим. Н. В. Ревуненковой; Под общ.ред. А. Д. Люблинской. — Л.: Наука, 1978. — 312 с.
  • Философия в «Энциклопедии» Дидро и Д’Аламбера. — М.: Наука, 1994. — 720 с.

Литература

  • Добровольский В. А. Д’Аламбер. — М.: Знание, 1968. — 32 с.
  • История математики под редакцией А. П. Юшкевича, в 3 т. — М.: Наука.
  • Избранная переписка Даламбера и Екатерины II. // Исторический вестник. № 4, 1884.
  • История в энциклопедии Дидро и Д’Аламбера. Серия «Памятники исторической мысли». — Л.: Наука, 1978. — 318 с.
  • Т. Мор. Оуэн. Дидро. Д’Аламбер. Кондорсе. Биографические повествования. Серия: Жизнь замечательных людей. Биографическая библиотека Флорентия Павленкова. Урал ЛТД, 1998, 490 с. ISBN 5-88294-088-5.
  • Джон Дж. О’Коннор и Эдмунд Ф. РобертсонД’Аламбер, Жан Лерон (англ.) — биография в архиве MacTutor.  (англ.)

Ссылки


Comments are closed.

Theme by Ali Han | Copyright 2024 Книга | Powered by WordPress